11149CHO3

BRIEF OVERVIEW CHAPTER
OF PYTHON 3

In this chapter

» Introduction to Python
» Python Keywords

“Don't you hate code that's not properly R

indented? Making it [indenting| part of
the syntax guarantees that all code is
properly indented.”

» Variables
» Data Types
» Operators

» Expressions

— G.van Rossum » Input and Output

» Debugging
» Functions

» if..else Statements

3.1 INTRODUCTION TO PYTHON » for Loop

An ordered set of instructions or commands to be > Wesieel Soope

executed by a computer is called a program. The
language used to specify those set of instructions
to the computeris called a programming language
for example Python, C, C++, Java, etc.

This chapter gives a brief overview of Python
programming language. Python is a very popular
and easy to learn programming language, created
by Guido van Rossum in 1991. It is used in a
variety of fields, including software development,
web development, scientific computing, big data

Rationalised 2023-24

=) 0
0% e
O

and Artificial Intelligence. The programs given in this book
are written using Python 3.7.0. However, one can install

any version of Python 3 to follow the programs given.
Download Python 3.1.1 Working with Python
The latest version of To write and run (execute) a Python program, we need
Python is available on thef§l {4 haye a Python interpreter installed on our computer

official website: or we can use any online Python interpreter. The
interpreter is also called Python shell. A sample screen
of Python interpreter is shown in Figure 3.1. Here, the
symbol >>> is called Python prompt, which indicates
that the interpreter is ready to receive instructions.
We can type commands or statements on this prompt
for execution.

https:/ /www.python.
org/

& Python 1720 Shel - o
File Edt Shell Debog Opticns Window Halp

Python 3.7.0 (v3.7.0:1bf9cc5093, Jun 27 2018, 04:06:47) [MSC v.1914 32 bit (Intel)] on win32
Type "copyright™, "credits"™ or "license()" for more information.
54

Figure 3.1: Python Interpreter or Shell

3.1.2 Execution Modes

There are two ways to run a program using the Python
interpreter:

a) Interactive mode

b) Script mode

(A) Interactive Mode

In the interactive mode, we can type a Python statement
on the >>> prompt directly. As soon as we press enter,
the interpreter executes the statement and displays the
result(s), as shown in Figure 3.2.

Working in the interactive mode is convenient for
testing a single line code for instant execution. But in
the interactive mode, we cannot save the statements for

& Pythn 3,750 5hell - |
File Edt Shell Debug Optices Window Help

Python 3.7.0 (v3.7.0:1bf%c5093, Jun 27 2018, 04:06:47) [MSC w.1914 32 bit (Intel)] on win32
Type "copyright", "credits"™ or "license()" for more information.

>>x> 1 + 2

3

>>> 4 - 2

2

»>>> "Hello"™ + "%

'HelloWorld'

>3

Figure 3.2: Python Interpreter in Interactive Mode

Rationalised 2023-24

future use and we have to retype the statements to run
them again.

(B) Script Mode

In the script mode, we can write a Python program in
a file, save it and then use the interpreter to execute
the program from the file. Such program files have
a .py extension and they are also known as scripts.
Usually, beginners learn Python in interactive mode,
but for programs having more than a few lines, we
should always save the code in files for future use.

BRrRIEF OVERVIEW OF PyTHON

IDLE : Integrated
Development and
Learning Environment

Python scripts can be created using any editor. Python
has a built-in editor called IDLE which can be used
to create programs. After opening the IDLE, we can
click File>New File to create a new file, then write our
program on that file and save it with a desired name.
By default, the Python scripts are saved in the Python
installation folder.

b "progd-1py - CANCERT\progd- Loy (.70
File [dd Formst Run Opbom Window Help
print("Save Earth")

print {"Preserve ire")

Figure 3.3: Python Code in Script Mode (prog3-1.py)

To execute a Python program in script mode,

a) Open the program using an editor, for example
IDLE as shown in Figure 3.3.
In IDLE, go to [Run]->[Run Module] to execute the
prog3-1.py as shown in Figure 3.4.
The output appears on shell as shown in Figure
3.5.

b)

)

File Edit Format | Run Options Window Help

| & prog3-1.py - CAMCERT\prog3-1.py (3.7.0) s O X

print {"save

=| Python Shell
print('}:ej

Check Module Alt+X

Run Module F5

Figure 3.4: Execution of Python in Script mode using IDLE

b Pytman 1.7.0 5hell — =]
e Edit Shell Debug Optioms Window Help

Python 3.7.0 (v3.7.0:1bf9%cch093, Jun 27 2018, 04:06:47) [MSC v.1914 32 bit (Intel)] on win32
Type "copyright", "credits" or "license()}" for more information.

o>

Save Earth
Freserve Future
e

RESTART: C:\NCERT\prog3-l.py

X

Figure 3.5: Output of a Program prog 3-1.py executed in Script Mode

Rationalised 2023-24

0
QQQQQ
O

NoTEs 3.2 PyrHON KEYWORDS

Keywords are reserved words. Each keyword has a
specific meaning to the Python interpreter. As Python
is case sensitive, keywords must be written exactly as
given in Table 3.1.

Table 3.1 Python keywords

None continue lambda

True def from nonlocal whﬂe
and del global not with

as elif if or yield
assert else import pass

break except in raise

3.3 IDENTIFIERS

In programming languages, identifiers are names used

to identify a variable, function, or other entities in a

program. The rules for naming an identifier in Python

are as follows:

e The name should begin with an uppercase or a
lowercase alphabet or an underscore sign (_). This
may be followed by any combination of characters
a-z, A-Z, 0-9 or underscore (_). Thus, an identifier
cannot start with a digit.

* It can be of any length. (However, it is preferred to
keep it short and meaningful).

* [t should not be a keyword or reserved word given in
Table 3.1.

¢ We cannot use special symbols like !, @, #, $, %, etc.
in identifiers.

For example, to find the average of marks obtained
by a student in three subjects namely Maths, English,
Informatics Practices (IP), we can choose the identifiers
as marksMaths, markseEnglish, markslP and avg
rather than a, b, c, or A, B, C, as such alphabets do not
give any clue about the data that variable refers to.

avg = (marksMaths + markstEnglish + markslP)/3
3.4 VARIABLES

Variable is an identifier whose value can change. For
example variable age can have different value for
different person. Variable name should be unique in a
program. Value of a variable can be string (for example,

Rationalised 2023-24

‘b’, ‘Global Citizen’), number (for example 10,71,80.52)
or any combination of alphanumeric (alphabets and
numbers for example ‘b10’) characters. In Python, we
can use an assignment statement to create new variables
and assign specific values to them.

gender = "M~
message = ""Keep Smiling"
price = 987.9

Variables must always be assigned values before
they are used in the program, otherwise it will lead
to an error. Wherever a variable name occurs in the
program, the interpreter replaces it with the value of
that particular variable.

Program 3-2 Write a Python program to find the sum
of two numbers.

#Program 3-2
#To find the sum of two given numbers

numl = 10

num2 = 20

result = numl + num2

print(result)

#print function in python displays the output
Output:

30

Program 3-3 Write a Python program to find the area
of a rectangle given that its length is 10
units and breadth is 20 units.

#Program 3-3
#To find the area of a rectangle

length = 10
breadth = 20
area = length * breadth
print(area)
Output:
200

3.5 Darta TYPES

Every value belongs to a specific data type in Python.
Data type identifies the type of data which a variable
can hold and the operations that can be performed on
those data. Figure 3.6 enlists the data types available
in Python.

Rationalised 2023-24

BRrRIEF OVERVIEW OF PyTHON

Comments are used
to add a remark or
a note in the source
code. Comments
are not executed by
interpreter. They
are added with the
purpose of making
the source code
easier for humans
to understand. They
are used primarily
to document the
meaning and purpose
of source code.

In Python, a single
line comment starts
with # (hash sign).
Everything following
the # till the end of
that line is treated
as a comment and
the interpreter
simply ignores it
while executing the
statement.

Q (0)
o 0 @
O (0

INFOrRMATICS PRACTICES — CLAsS XI 9

| Data Types in Python |

Numbers Sequences Sets None | |Mappings
|
1 1 1
"oint® St
Integer Point Complex rings Dictionaries
Lists
Boolean
Tuples

Figure 3.6: Different Data Types in Python
3.5.1 Number

Number data type stores numerical values only. It is
further classified into three different types: iInt, float
and complex.

Table 3.2 Numeric data types

Type/ Class | Description Examples

int integer numbers -12, -3, 0, 123, 2
float floating point numbers -2.04, 4.0, 14.23
complex complex numbers 3+4i,2-2i

Boolean data type (bool) is a subtype of integer. It
is a unique data type, consisting of two constants, True
and False. Boolean True value is non-zero. Boolean
False is the value zero.

Let us now try to execute few statements in interactive
mode to determine the data type of the variable using
built-in function type().

Example 3.1
>>> quantity = 10
>>> type(quantity)
<class "int">

>>> Price = -1921.9

>>> type(price)

<class 'float'>

Variables of simple data types like integer, float, boolean
etc. hold single value. But such variables are not useful
to hold multiple data values, for example, names of the
months in a year, names of students in a class, names
and numbers in a phone book or the list of artefacts in a
museum. For this, Python provides sequence data types like
Strings, Lists, Tuples, and mapping data type Dictionaries.

3.5.2 Sequence

A Python sequence is an ordered collection of items,
where each item is indexed by an integer value. Three

Rationalised 2023-24

0
© 0," 0
O ‘,‘ﬁb

- s BRIEF OVERVIEW OF PYTHON

types of sequence data types available in Python are NoTES
Strings, Lists and Tuples. A brief introduction to these
data types is as follows:

(A) String
String is a group of characters. These characters may be
alphabets, digits or special characters including spaces.
String values are enclosed either in single quotation
marks (for example ‘Hello’) or in double quotation marks
(for example “Hello”). The quotes are not a part of the
string, they are used to mark the beginning and end of
the string for the interpreter. For example,

>>> strl = "Hello Friend”

>>> str2 = ''452"

We cannot perform numerical operations on strings,
even when the string contains a numeric value. For
example str2 is a numeric string.

(B) List
List is a sequence of items separated by commas and
items are enclosed in square brackets [|. Note that

items may be of different date types.

Example 3.2
#To create a list
>>> listl = [5, 3.4, "New Delhi", "20C", 45]
#print the elements of the list listl
>>> listl
[5, 3.4, 'New Delhi', '20C', 45]
(C) Tuple

Tuple is a sequence of items separated by commas and
items are enclosed in parenthesis (). This is unlike list,
where values are enclosed in brackets []. Once created,
we cannot change items in the tuple. Similar to List,
items may be of different data types.

Example 3.3
#create a tuple tuplel
>>> tuplel = (10, 20, "Apple™, 3.4, "a")
#print the elements of the tuple tuplel
>>> print(tuplel)
(10, 20, "Apple”, 3.4, "a")

3.5.3 Mapping

Mapping is an unordered data type in Python. Currently,
there is only one standard mapping data type in Python
called Dictionary.

Rationalised 2023-24

Q (2)
0 0,"0
O oﬂ

INFORMATICS PRACTICES — CLass XI 9

(A) Dictionary

Dictionary in Python holds data items in key-value pairs
and Items are enclosed in curly brackets {}. dictionaries
permit faster access to data. Every key is separated from
its value using a colon (:) sign. The key value pairs of
a dictionary can be accessed using the key. Keys are
usually of string type and their values can be of any data
type. In order to access any value in the dictionary, we
have to specify its key in square brackets [|.

Example 3.4

#create a dictionary

>>> dictl = {"Fruit":"Apple~,
'Climate':'Cold', 'Price(kg) ':120}

>>> print(dictl)

{'"Fruit': 'Apple', 'Climate': 'Cold',
'"Price(kg)': 120}
#getting value by specifying a key
Python compares two >>> print(dictl['Price (kg) '])
strings lexicographically 120

(According to the
theory and practice of
composing and writing

dictionary), using ASCII An operator is used to perform specific mathematical or
value of the characters. logical operation on values. The values that the operator
If the first character of works on are called operands. For example, in the

both strings are same, . .
the second character is expression 10 + num, the Value. 103 and the variable num
compared, and so on. are operands and the + (plus) sign is an operator. Python
supports several kind of operators, their categorisation

is briefly explained in this section.

3.6 OPERATORS

3.6.1 Arithmetic Operators

Python supports arithmetic operators (Table 3.3) to
perform the four basic arithmetic operations as well as
modular division, floor division and exponentiation.

'+' operator can also be used to concatenate two
strings on either side of the operator.

>>> strl "Hello™
>>> str2 = "India"”
>>> strl + str2
"Hellolndia*

'*' operator repeats the item on left side of the
operator if first operand is a string and second operand
is an integer value.

>>> strl = "India”
>>> strl * 2
"Indialndia*

Rationalised 2023-24

o ¢ (“)QQ@
O
—

Table 3.3 Arithmetic operators in Python

e T ia

Addition Adds two numeric values on numl =
either side of the operator >>> num2 = 6
>>> numl + num2
11
- Subtraction = Subtracts the operand on the >>> numl = 5
right from the operand on the left >>> num2 = 6
>>> numl - num2
-1
& Multiplication Multiplies the two values on both >>> numl = 5
sides of the operator >>> num2 = 6
>>> numl * num2
30
/ Division Divides the operand on the left >>> numl = 5
by the operand on the right of the >>> num2 = 2
operator and returns the quotient >>> numl / num2
2.5
% Modulus Divides the operand on the left >>> numl = 13
by the operand on the right and >>> num2 = 5
returns the remainder >>> numl % num2
3
// Floor Division Divides the operand on the left >>> numl = 5
by the operand on the right and >>> num2 = 2

returns the quotient by removing >>> numl // num2
the decimal part. It is sometimes 2

also called integer division. >>> num2 /7 numl
0
i Exponent Raise the base to the power of the >>> numl 8

exponent. That is, multiply the >>> num2
base as many times as given in >>> numl ** num2
the exponent 81

Operators (+) and (*) work in similar manner for other
sequence data types like list and tuples.

3.6.2 Relational Operators

Relational operator compares the values of the operands
on its either side and determines the relationship among
them. Conside the given Python variables numl = 10,
num2 = 0, num3 = 10, strl = "Good", str2 =
"Afternoon' for the following examples in Table 3.4:

Table 3.4 Relational operators in Python

Example (Try in Lab)

>>> numl == num2
If values of two operands are
== Dl e equal, then the condition is True e
qua, thern L ? >> strl == str2
otherwise it is False.
False

Rationalised 2023-24

I= Not equal to
> Greater than
< Less than

If values of two operands are not
equal, then condition is True,
otherwise it is False

If the value of the left operand is
greater than the value of the right
operand, then condition is True,
otherwise it is False.

If the value of the left operand is
less than the value of the right
operand, the condition is true
otherwise it is False

INFORMATICS PRACTICES — CLass XI 9

0
© 0,0
O oﬂ

_

>>> numl !'= num2
True

>>> strl = str2
True

>>> numl
False

>>> numl > num2
True
>>> strl > str2
True

I= num3

>>> numl < num3
False

Similarly, there are other relational operators like <=

and >=.

3.6.3 Assignment Operators
Assignment operator assigns or changes the value of
the variable on its left, as shown in Table 3.5.

Table 3.5 Assignment operators in Python

Example (Try in Lab

= Assigns value from right side operand to left >>>

side operand

It adds the value of right side operand to the left

side operand and assigns the result to the left

side operand.

Note: x+=y is same asx=x+Yy

= It subtracts the value of right side operand

from the left side operand and assigns the
result to left side operand.
Note: x—=yis same as X=X—Y

>>>
>>>
2

>>>
>>>

2
numl

numl
num2
num2

country = "India*
country

"India*

>>>
>>>
>>>
>>>
12
>>>
2

>>>
>>>
>>>
>>>
8

10
2
num2

numl
num2
numl
numl

+ 1l

num2

numl
num2
numl
numl

Similarly, there are other assignment operators like

=, /= %=, [/=, and **=.

3.6.4 Logical Operators

There are three logical operators (Table 3.6) supported
by Python. These operators (and, or, not) are to be
written in lower case only. The logical operator evaluates
to either True or False based on the logical operands

on its either side.

Rationalised 2023-24

o ¢ (“)QQQ
(&)
—

Table 3.6 Logical operators in Python

and Logical AND If both operands are True, >>> numl =
then condition becomes >>> num2 = —20
True >>> numl == 10 and num2 == -20
True
>>> numl == 10 and num2 == 10
False
or Logical OR If any of the two operands >>> numl = 10
are True, then condition >>> num2 = 2
becomes True >>> numl >= 10 or num2 >= 10
True
>>> numl <= 5 or num2 >= 10
False
not Logical NOT Used to reverse the logical >>> numl = 10
state of its operand >>> not (numl == 20)
True
>>> not (numl == 10)
False

3.6.5 Membership Operators

Membership operator (Table 3.7) is used to check if a
value is a member of the given sequence or not.

Table 3.7 Membership operators in Python

Example sy in Lab

in Returns True if the variable or value is found in the >>> numSeqg = [1,2, 3]
specified sequence and False otherwise >>> 2 In numSeq
True
>>> "1% In numSeq
False
#'1' 1s a string while
#numSeq contains number 1.
not in Returns True if the variable/value is not found in >>> numSeq = [1,2,3]
the specified sequence and False otherwise >>> 10 not in numSeq
True
>>> 1 not iIn numSeq
False

3.7 EXPRESSIONS

An expression is defined as a combination of constants,
variables and operators. An expression always evaluates
to a value. A value or a standalone variable is also
considered as an expression but a standalone operator
is not an expression. Some examples of valid expressions
are given below.

(i) num — 20.4 Gii

(1

) 23/3 -5 * 7(14 -2)
(ii) 3.0 + 3.14)

i
iv) "Global"+"Citizen"

Rationalised 2023-24

NoTESs

INFORMATICS PRACTICES — CLass XI 9

(8]
© 0,0
O oﬂ

3.7.1 Precedence of Operators

So far we have seen different operators and examples
of their usage. When an expression contains more than
one operator, their precedence (order or hierarchy)
determines which operator should be applied first.
Higher precedence operator is evaluated before the
lower precedence operator. In the following example, "*'
and '/' have higher precedence than '+' and '-'.
Note:
a) Parenthesis can be used to override the precedence of
operators. The expression within () is evaluated first.
b) For operators with equal precedence, the expression
is evaluated from left to right.

Example 3.5 How will Python evaluate the following
expression?
20 + 30 * 40

Solution:
#precedence of * is more than that of +
= 20 + 1200 #Step 1
= 1220 #Step 2
Example 3.6 How will Python evaluate the following
expression?
(20 + 30) * 40
Solution:

= (20 + 30) * 40 # Step 1
#using parenthesis(), we have forced
precedence of + to be more than that of *

= 50 * 40 # Step 2
= 2000 # Step 3

Example 3.7 How will the following expression be
evaluated?
15.0 / 4.0 + (8 + 3.0)

Solution:

= 15.0 / 4.0 + (8.0 + 3.0) #Step 1
=15.0/ 4.0 + 11.0 #Step 2
= 3.75 + 11.0 #Step 3
= 14.75 #Step 4

3.8 Input AND OuTPUT

Sometimes, we need to enter data or enter choices into
a program. In Python, we have the Input() function
for taking values entered by input device such as a
keyboard. The 1nput() function prompts user to enter
data. It accepts all user input (whether alphabets,

Rationalised 2023-24

-

numbers or special character) as string. The syntax for
input() is:

variable = input ([Prompt])

Prompt is the string we may like to display on the
screen prior to taking the input, but it is optional. The
input() takes exactly what is typed from the keyboard,
converts it into a string and assigns it to the variable on
left hand side of the assignment operator (=).

Example 3.8

>>> fname = input ("Enter your first name: ")

Enter your first name: Arnab

>>> age = input("Enter your age: ')

Enter your age: 19

The variable fname gets the string ‘Arnab’ as input.
Similarly, the variable age gets '19' as string. We can
change the datatype of the string data accepted from
user to an appropriate numeric value. For example, the
int() function will convert the accepted string to an
integer. If the entered string is non-numeric, an error
will be generated.

Example 3.9

#function int() to convert string to integer

>>> age = int(input("Enter your age: "))

Enter your age: 19

>>> type(age)

<class "int">

Python uses the print() function to output data
to standard output device — the screen. The function
print() evaluates the expression before displaying it
on the screen. The syntax for print() is:

print(value)

Example 3.10

print("'Hello™) Hello
print(10*2.5) 25.0

3.9 DEBUGGING

Due to errors, a program may not execute or may
generate wrong output. :

i) Syntax errors
ii) Logical errors
iii) Runtime errors

Rationalised 2023-24

BRrRIEF OVERVIEW OF PyTHON

NoTESs

0
© 0,0
O oﬂ

INFORMATICS PrRACTICES — CLass XI . _

NoTEs 3.9.1 Syntax Errors

Like any programming language, Python has rules that
determine how a program is to be written. This is called
syntax. The interpreter can interpret a statement of a
program only if it is syntactically correct. For example,
parentheses must be in pairs, so the expression (10 +
12) is syntactically correct, whereas (7 + 11 is not due
to absence of right parenthesis. If any syntax error is
present, the interpreter shows error message(s) and
stops the execution there. Such errors need to be
removed before execution of the program.

3.9.2 Logical Errors

A logical error/bug (called semantic error) does not stop
execution but the program behaves incorrectly and
produces undesired /wrong output. Since the program
interprets successfully even when logical errors are
present in it, it is sometimes difficult to identify these
errors.

For example, if we wish to find the average of two
numbers 10 and 12 and we write the code as 10 + 12/2,
it would run successfully and produce the result 16,
which is wrong. The correct code to find the average
should have been (10 + 12) /2 to get the output as 11.

3.9.3 Runtime Error

A runtime error causes abnormal termination of
program while it is executing. Runtime error is when the
statement is correct syntactically, but the interpreter
can not execute it.

For example, we have a statement having division
operation in the program. By mistake, if the denominator
value is zero then it will give a runtime error like “division
by zero”.

The process of identifying and removing logical
errors and runtime errors is called debugging. We need
to debug a program so that is can run successfully and
generate the desired output.

3.10 FuNcTIONS

A function refers to a set of statements or instructions
grouped under a name that perform specified tasks.
For repeated or routine tasks, we define a function. A
function is defined once and can be reused at multiple

Rationalised 2023-24

0
© 0," 0
O ‘,(]

- s BRIEF OVERVIEW OF PYTHON

places in a program by simply writing the function NoTES
name, i.e., by calling that function.

Suppose we have a program which requires to
calculate compound interest at multiple places. Now
instead of writing the formula to calculate the interest
every time, we can create a function called CalcComplInt
and inside that function we write the code to take
inputs (like interest rate, duration, principle), calculate
interest, and display output. We can simply call the
function by writing the function name CalcComplnt
whenever compound interest is to be computed and
thus reuse the code to save time and efforts.

Python has many predefined functions called built-in
functions. We have already used two built-in functions
print() and input(). A module is a python file in
which multiple functions are grouped together. These
functions can be easily used in a Python program by
importing the module using Import command. Use
of built-in functions makes programming faster and
efficient. To use a built-in function we must know the
following about that function:

¢ Function Name — name of the function.

* Arguments — While calling a function, we may pass
value(s), called argument, enclosed in parenthesis,
to the function. The function works based on these
values. A function may or may not have argument(s).

* Return Value — A function may or may not return one
or more values. A function performs operations on the
basis of argument (s) passed to it and the result is
passed back to the calling point. Some functions do
not return any value.

Let us consider the following Python program using
three built-in functions input(), Int() and print():

#Calculate square of a number

num = int (input ("Enter the first number"))

square = num * num

print("*the square of', num,

is "', square)

Observe:

* Two built-in functions are used in the first statement,
int() and input(). The third line has a function
print().

* The input function accepts an argument, “Enter your
name”. Argument(s) is the value(s) passed within

the parenthesis.

Rationalised 2023-24

NoTEs

INFOrRMATICS PRACTICES — CLAsS XI 9

Q (0)
o 0 @
O (0

* Similarly the print function has four arguments "the
square of", num, "is", square separated by
commas.

* The int function in the first line takes as argument
the value entered by the user from the keyboard and
converts it into a string and returns it. Thus the
return value from the 1nt() function is an integer.
Some of the most commonly used built-in

functions in Python are listed in Table 3.8 under four

broad categories.

Table 3.8 Some commonly used built-in functions in

Python
Output Conversion Functions Functions
input() bool O absQ __import__ O
print() chrQ divmod() len()
dict() max() range()
float () min(Q) type()
int(Q) pow ()
list(Q) sum()
ordQ
set()
strQ)
tuple

3.11 i1f._else STATEMENTS

Usually statements in a program are executed one after
another. However, there are situations when we have
more than one option to choose from, based on the
outcome of certain conditions. This canbedoneusing i f. .
else conditional statements. Conditional statements let
us write program to do different tasks or take different
paths based on the outcome of the conditions.

There are three ways to write 1. .else statements:

- 1T statement — executes the statement(s) inside If
when the condition is true.
Example 3.11
age = int(input("Enter your age "))

if age >= 18: # use ‘:’ to indicate end of
condition.

print("Eligible to vote™)

Rationalised 2023-24

iT...else statement executes the statement(s)
inside 1If when the condition is true, otherwise
executes the statement(s) inside else (when the
condition is false)

#Program to subtract smaller number from the
#larger number and display the difference.

numl = int (input ("Enter first number: "))
num2 = int(input("Enter second number: "))
if numl > num2:

diff = numl - num?2
else:

diff = num2 - numl

print ("The difference of",numl, "and",num2,
"is",diff)

Output:

Enter first number: 5

Enter second number: 6

The difference of 5 and 6 is 1

if.._elif.___else is use dot check multiple
conditions and execute statements accordingly.
Meaning of elifis elseif. We can also write elseif
instead of el 1T for more clarity.

Example 3.12 Check whether a number is positive,

negative, or zero.
number = int(input("Enter a number: ')
it number > O:
print('"Number is positive')
elif number < O:
print("'Number is negative')
else:

print ("Number is zero")

When the conditional statements appear, the

Python interpreter executes code inside one block that
is selected based on the condition. Number of elif is
dependent on the number of conditions to be checked.
If the first condition is false, then the next condition
is checked, and so on. If one of the conditions is true,
then the corresponding indented block executes, and
the 1f statement terminates. After that, the statements
outside the 1f..else are executed or the program
terminates if there are no further statements.

Rationalised 2023-24

BRrRIEF OVERVIEW OF PyTHON

Python uses
indentation for block
as well as for nested

block structures.
Leading whitespace
(spaces and tabs)
at the beginning
of a statement is
called indentation.
In Python, the same
level of indentation
associates statements
into a single block of
code. The interpreter
checks indentation
levels very strictly
and throws up syntax
errors if indentation
is not correct. It is
a common practice
to use a single tab
for each level of
indentation.

P
© L ®
O oﬂ

INFORMATICS PrRACTICES — CLass XI . _

3.12 For Loor

Sometimes we need to repeat certain things for a
particular number of times. For example, a program has
to display attendance for every student of a class. Here
the program has to execute the print statement for
every student. In programming, this kind of repetition
is called looping or iteration, and it is done using for
statement. The for statement is used to iterate over
a range of values or a sequence. The loop is executed
for each item in the range. The values can be numeric,
string, list, or tuple.

When all the items in the range are exhausted, the
statements within loop are not executed and Python
interpreter starts executing the statements immediately
following the for loop. While using for loop, we should
know in advance the number of times the loop will
execute.

Syntax of the for Loop:

for <control-variable> In <sequence/items in
range>:

<statements inside body of the

loop>
Program 3-4 Program to
print even

numbers in a
given sequence
using for loop.

#Program 3-4
#Print even numbers in the given sequence
numbers = [1,2,3,4,5,6,7,8,9,10]
for num in numbers:
it (num % 2) == O:
print(num, "is an even Number®)
Output:

2 is an even Number
4 is an even Number
6 1s an even Number
8 is an even Number
10 is an even Number

Note: Body of the loop is indented with respect to the for statement.

Rationalised 2023-24

o ¢ (“)QQQ
(&)
—

3.12.1 The range() Function

The range() is a built-in function in Python. Syntax of
range() function is:

range ([start], stop[, step])

It is used to create a list containing a sequence of
integers from the given start value upto stop value
(excluding stop value), with a difference of the given
step value. If start value is not specified, by default
the list starts from O. If step is also not specified, by
default the value is incremented by 1 in each iteration.
All parameters of range() function must be integers. The
step parameter can be a positive or a negative integer
excluding zero.

Example 3.13
>>> list(range(10))
(0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

#start value is given as 2
>>> list(range(2, 10))
[21 3/ 4! 5/ 6I 7/ 8! 9]

#step value is 5 and start value is 0O

>>> list(range(0, 30, 5))

[0, 5, 10, 15, 20, 25]

#step value is -1. Hence, decreasing

#sequence 1s generated

>>> list(range(0, -9, -1))

[OI _ll _21 _31 _41 _51 _61 _71 _8]

The function range() is often used in for loops for
generating a sequence of numbers.

Program 3-5 Program to print the multiples of 10 for
numbers in a given range.
#Program 3-5
#Print multiples of 10 for numbers in a range
for num in range(5):
if num > O:
print(num * 10)
Output:

10
20
30
40

Rationalised 2023-24

=) 0
QOQQQ
O

3.13 NEsTED Looprs

A loop may contain another loop inside it. A loop inside
another loop is called a nested loop.

Program 3-6 Program to
demonstrate
working of
nested for
loops.

#Program 3-6
#Demonstrate working of nested for loops
for varl in range(3):
print("lteration " + str(varl + 1) + " of outer loop')
for var2 in range(2): #nested loop
print(var2 + 1)
print('Out of inner loop™)
print("'Out of outer loop™)
Output:
Iteration 1 of outer loop
1
2
Out of inner loop
Iteration 2 of outer loop
1
2
Out of inner loop
Iteration 3 of outer loop
1
2
Out of inner loop
Out of outer loop

Rationalised 2023-24

0
© 0," 0
O oﬂ

- s BRIEF OVERVIEW OF PYTHON

SUMMARY NoTES

* Python is an open-source, high level, interpreter-
based language that can be used for a multitude of
scientific and non-scientific computing purposes.

¢ Comments are non-executable statements in a
program.

* An identifier is a user defined name given to a
variable or a constant in a program.

* Process of identifying and removing errors from a
computer program is called debugging.

* Trying to use a variable that has not been assigned
a value gives an error.

 There are several data types in Python — integer,
boolean, float, complex, string, list, tuple, sets,
None and dictionary.

* Operators are constructs that manipulate the value
of operands. Operators may be unary or binary.

* An expression is a combination of values, variables,
and operators.

* Python has input() function for taking user input.

* Python has print() function to output data to a
standard output device.

* The 1T statement is used for decision making.

* Looping allows sections of code to be executed
repeatedly under some condition.

* for statement can be used to iterate over a range
of values or a sequence.

* The statements within the body of for loop are
executed till the range of values is exhausted.

o

EXERCISE ==
1. Which of the following identifier names are invalid and
why?
a)|Serial_no. e) | Total_Marks
b) | 1st_Room f) | total-Marks
c) | Hundred$ g) | _Percentage
d) | Total Marks h) | True

Rationalised 2023-24

Q (0)
o 0 @
O (0

INFOrRMATICS PRACTICES — CLAsS XI 9

NoTES 2. Write the corresponding Python assignment statements:
a) Assign 10 to variable length and 20 to variable
breadth.

b) Assign the average of values of variables length and
breadth to a variable sum.

c) Assign a list containing strings ‘Paper’, ‘Gel Pen’, and
‘Eraser’ to a variable stationery.

d) Assign the strings ‘Mohandas’, Karamchand’, and
‘Gandhi’ to variables first, middle and last.

e) Assign the concatenated value of string variables
first, middle and last to variable fullname. Make sure
to incorporate blank spaces appropriately between
different parts of names.

3. Which data type will be used to represent the following
data values and why?
a) Number of months in a year

b) Resident of Delhi or not
c) Mobile number

d) Pocket money

e) Volume of a sphere

f) Perimeter of a square

g) Name of the student
h) Address of the student

4. Give the output of the following when numl = 4, num2 =
3, num3 = 2
a) numl += num?2 + num3
b) print (numl)

c) numl = numl ** (num?2 + num3)
d) print (numl)

e) numl **= num?2 + ¢

f) numl ='5"+"5%

g) print(numl)

h) print(4.00/(2.0+2.0))

i) numl = 2+9*%((3*12)-8)/10

j) print(num1l)

k) num1 = float(10)

]) print (numl)

m)numl = int('3.14')

Rationalised 2023-24

10.

11.

n) print (numl)
o) print(10 != 9 and 20 >= 20)
p) print(5 % 10 + 10 < 50 and 29 <= 29)

Categorise the following as syntax error, logical error or
runtime error:

a) 25/ 0
b) numl = 25; num?2 = 0; num1/num?

Write a Python program to calculate the amount payable
if money has been lent on simple interest. Principal or
money lent = P, Rate = R% per annum and Time = T
years. Then Simple Interest (SI) = (Px R x T)/ 100.

Amount payable = Principal + SI.

P, R and T are given as input to the program.

Write a program to repeat the string “GOOD MORNING”
n times. Here n is an integer entered by the user.

Write a program to find the average of 3 numbers.

Write a program that asks the user to enter one's name
and age. Print out a message addressed to the user that
tells the user the year in which he/she will turn 100
years old.

What is the difference between else and el i f construct
of 1T statement?

Find the output of the following program segments:
a) TFor 1 in range(20,30,2):

print(i)
b) country = 'INDIA'
for 1 In country:
print (i)

c) i =0; sum =0
while 1 < 9:
ifi %4 ==0:
sum = sum + 1
i=1a+2
print (sum)

CaseE STuDpY BASED QUESTION

Schools use “Student Management Information System”
(SMIS) to manage student related data. This system provides
facilities for:

Rationalised 2023-24

BRrRIEF OVERVIEW OF PyTHON

NoTEs

Q (0)
© o @
O (0

INFOrRMATICS PRACTICES — CLAsS XI 9

NoTEs
Name of School

Student Name: POR Roll No: 99
Class: XI Section: A
Address : Address Line 1

Address Line 2

City: ABC Pin Code: 999999
Parent’s/ Guardian’s Contact No: 9999999999

* Recording and maintaining personal details of students.
* Maintaining marks scored in assessments and computing
results of students.
* Keeping track of student attendance, and
* Managing many other student-related data in the school.
Let us automate the same step by step.
Identify the personal details of students from your school
identity card and write a program to accept these details for
all students of your school and display them in this format.

Rationalised 2023-24

